Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2783, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555276

RESUMO

Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem da Célula/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
Cell Rep ; 43(3): 113928, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38461413

RESUMO

Elucidating the complex relationships between mRNA and protein expression at high spatiotemporal resolution is critical for unraveling multilevel gene regulation and enhancing mRNA-based developmental analyses. In this study, we conduct a single-cell analysis of mRNA and protein expression of transcription factors throughout C. elegans embryogenesis. Initially, cellular co-presence of mRNA and protein is low, increasing to a medium-high level (73%) upon factoring in delayed protein synthesis and long-term protein persistence. These factors substantially affect mRNA-protein concordance, leading to potential inaccuracies in mRNA-reliant gene detection and specificity characterization. Building on the learned relationship, we infer protein presence from mRNA expression and demonstrate its utility in identifying tissue-specific genes and elucidating relationships between genes and cells. This approach facilitates identifying the role of sptf-1/SP7 in neuronal lineage development. Collectively, this study provides insights into gene expression dynamics during rapid embryogenesis and approaches for improving the efficacy of transcriptome-based developmental analyses.


Assuntos
Caenorhabditis elegans , Transcriptoma , Animais , Transcriptoma/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Análise Espaço-Temporal , Regulação da Expressão Gênica no Desenvolvimento
3.
Cell Syst ; 13(8): 615-630.e9, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35882226

RESUMO

Developmental processes are intrinsically robust so as to preserve a normal-like state in response to genetic and environmental fluctuations. However, the robustness and potential phenotypic plasticity of individual developing cells under genetic perturbations remain to be systematically evaluated. Using large-scale gene perturbation, live imaging, lineage tracing, and single-cell phenomics, we quantified the phenotypic landscape of C. elegans embryogenesis in >2,000 embryos following individual knockdown of over 750 conserved genes. We observed that cellular genetic systems are not sufficiently robust to single-gene perturbations across all cells; rather, gene knockdowns frequently induced cellular defects. Dynamic phenotypic analyses revealed many cellular defects to be transient, with cells exhibiting phenotypic plasticity that serves to alleviate, correct, and accommodate the defects. Moreover, potential developmentally related cell modules may buffer the phenotypic effects of individual cell position changes. Our findings reveal non-negligible contributions of cellular plasticity and multicellularity as compensatory strategies to increase developmental robustness.


Assuntos
Caenorhabditis elegans , Plasticidade Celular , Adaptação Fisiológica , Animais , Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...